

光化学堆積法によるCu添加p型 AIO_x薄膜の作製・評価

名古屋工業大学 梅村将成,市村正也

1. 背景

2. 実験方法 (d-PCD法, アニール条件)

3. 実験結果 (AlO_x, Cu-AlO_x薄膜の評価)

4. 結論

背景

- バンドギャップ:~8.8 eV (α-Al₂O₃) [1]
- > 絶縁破壊電界: 6.0-8.0 MV/cm (α-Al₂O₃)
- ▶ 化学的、熱的に安定な物質
- ▶ 原料が豊富に存在 (Al: クラーク数第3位)

コランダム構造 (α-Al₂O₃)

ts of aluminum ed using the sta 基板 hed O/Al rat ins that the a AlO_x AlO_x with : tursor baths co are sulfur-fre

類似した結晶構造を持つGa₂O₃, In₂O₃は透明n型半導体 (酸素欠陥や不純物添加による導電性)

〇目的

酸素欠陥や不純物添加の導入による、<mark>導電AlO_x薄膜</mark>の実現

[1] R. H. French, J. Amer. Ceram. Soc, 73, 477–489 (1990)

ドロップ光化学堆積(d-PCD)法によって作製したAlO_x薄膜より, 微弱な n型導電性を観測 [7].

[2] A. R. Chowdhuri, C. G. Takoudis, R. F. Klie, and N. D. Browning, Appl. Phys. Lett, 80, 4241 (2002)

- [3] Y. C. Kim, H. H. Park, J. S. Chun, W, J, Lee, Thin Solid Films, 237, 57-65 (1994)
- [4] L. Patsiouras, E. Skotadis, N. Gialama, C. Drivas, S. Kennou, K. Giannakopoulos, and D. Tsoukalas, Nanotechnol, 29, 465706 (2018)
- [5] R. Boidin, T. Halenkovič, V. Nazabal, L. Beneš, and P. Němec, Ceram. Int, 42 1177 (2016)
- [6] S. Sato, M. Ichimura, Mater. Res. Express, 4, 046405 (2017)
- [7] 梅村将成、市村正也 第64回春季応用物理講演会, 17p-419-4 (2017)

添加物としてのCuの特徴

■ Cu....Cu⁺, Cu²⁺

→AlO_x薄膜中でAl³⁺との置換により, accepterとして働くと考えられる [8]

族,周期	11	12	13
2			В
3			Al
4	Cu	Zn	Ga

[8] Ichimura M J. Electron. Mater in press.

1. 背景

2. 実験方法 (d-PCD法, アニール)

3. 実験結果 (AlO_x, Cu-AlO_x薄膜の評価)

4. 結論

d-PCD法概要

d-PCD法 装置写真

<u>特性評価</u> (膜厚, 組成, 光学, 電気的特性)

<u> </u>	田八-		.
	EA		
大	河犬。	/]	1/3

<u>基板洗浄</u>	混合溶液法		別溶液法		
I	溶液		溶液① (A1層)		
▲ … <u>溶液作製</u>	$Al(NO_3)_3 [mM]$	10	$Al(NO_3)_3 [mM]$	10	
Ĭ	$Cu(NO_3)_2 [mM]$	1, 5, 10	$Na_2S_2O_3 [mM]$	50	
	$Na_2S_2O_3 [mM]$	50	二次純水 [mL]	50	
ľ	二次純水 [mL]	50	溶液 ② (Cu)	罾)	
) … <u>アニール</u>			$Cu(NO_3)_2 [mM]$	1, 5, 10, 15	
			$Na_2S_2O_3 [mM]$	50	
ł			二次純水 [mL]	50	
特性評価	민				

(膜厚, 組成, 光学, 電気的特性)

が溶液法ではAI/智とCu/智を父互に堆損し、 アニールによるCuの拡散を狙う

$$\rho = R \cdot \frac{S}{l} = R \cdot \frac{13.4 \times 10^{-1} \times t}{0.2 \times 10^{-1}} [\Omega \cdot cm]$$
(1)
※S:電流経路面積 [cm²], *l*:電流経路長, *t*:AlO_x薄膜の膜厚

I-V測定により、薄膜の抵抗率を算出

2. 実験方法 (d-PCD法, アニール)

3. 実験結果 (AlO_x, Cu-AlO_x薄膜の評価)

混合溶液法と別溶液法を比較しながら評価

表面粗さ測定結果, SEM像 (FTO基板, Air400°C)

0.1 - $0.2\ \mu m$

Nagoya Institute of Technology

別溶液法で作製した薄膜は、混合溶液法に比べて表面が均-

AES spectrum (FTO基板, Air 400°C)

薄膜よりS, O, Al, Cuを確認.

別溶液法

混合溶液法

Composition ratio Composition ratio 1.5 1.5 O/A1 O/A1 1 Cu/Al • Cu/Al 0.51 0.5 0.5 S/A1 ▲ S/Al 0.17 0.095 0.067 0.045 0 0 0 5 10CuNO₃ · 3H₂O [mM] 15 0 10 0 $CuNO_3 \cdot {}^{5}_{3H_2O} [mM]$

Cu増加に伴い, Oも増加する傾向を確認

明確なAI層とCu層の交互構造は確認できず.

Cu添加により,透過率は大幅に減少.

PEC測定 (FTO基板, Air 400°C)

混合溶液法 別溶液法 80 30 Current density [µA/cm²] 0 10 0 0 10 0 0 40 Current density [µA/cm²] Dark Dark 15 mM 1 mM60 40 Light Light Light Light AlO_x 20 0 10 mM -20 Cu:1 mM 5 mM -40 Light Cu: 5 mM -60 Cu: 10 mM Dark Dark -80 -0.5 0.5 -0.5 -0.3 -0.10.10.3 0.5 0 Potential [V vs Ag/AgCl] Potential [V vs AgCl]

Cuを添加する事で,p型の応答性を確認.

別溶液法による薄膜は混合溶液法に対し,高透過率

別溶液法による薄膜は、可視光領域で80%以上の透過率

絶縁ガラス基板上でオーミック特性を確認.

二次元AESマッピング測定結果

別溶液法 (Cu:15 mM)

別溶液法では、Cuは薄膜中に均一に存在→電流経路の確保

結論

- ▶ Cu添加によって, AlO_x薄膜はp型半導体としての特性を示した.
- 二種類の添加方法を行ったが,別溶液によって作製した薄膜 は混合溶液法に比べ,<u>表面均一性,透明性,電気的抵抗</u>の面で 優位性を確認した.
- ▶ 別溶液法で作製したCu-AlO_x薄膜は、透明かつ低抵抗率を示し

ノこ.	Table.1. The transmit	tance and resi	stivities o	of air annealed	Cu-doped-AIC	$J_{\rm x}$ on the glasses.	

$CuNO_3 \cdot 3H_2O$	Transmittance [%]	The least resistivities [MΩcm]
0	95~98	Too high (>10 ⁴)
1	96~99	Too high (>10 ⁴)
5	95~98	400
10	94~97	Too high (>10 ⁴)
15	82~93	5.1