

電気化学堆積法による p-NiO/n-ZnO 透明太陽電池の作製

Fabrication of p-NiO/n-ZnO transparent solar cells by electrochemical deposition

⁰古山 実季 (M2), 市村正也 名古屋工業大学, 電気・機械工学専攻

^OMiki Koyama (M2), Masaya Ichimura Nagoya Institute of Tech., Dept. of Electrical & Mechanical Engineering

研究背景

太陽電池の課題:製造コスト … 真空・超高温などの複雑な製造プロセス 我々の取組み :簡易な設備で製造可能な電気化学堆積法での作製・評価

電気化学堆積(Electrochemical deposition: ECD)法

NiO, ZnOおよび両材料のヘテロ接合

NiO 酸化ニッケル

- E_g≈3.7 eVの透明材料
- 透明材料では数少ないp型材料
- ECD法による作製例が報告されている

ZnO 酸化亜鉛

- E_g ≈ 3.3 eVの透明n型材料
- ECD法による作製、薄膜太陽電池への応用例が多くある

両材料のヘテロ接合の報告

- 太陽電池、光センサ等の報告 ··· 光学的透明性、光起電力
- PLD法、Sol-gel法など… ECDによる作製・発電例はない

NiO/ZnO太陽電池の報告例

- 例1 (文献[1]より)
 - NiO:DCマグネトロンスパッタ法
 - ・ ZnO:PLD法

例2(文献[2]より)

- NiO:Sol-gel法
- ZnO:水熱合成法

[1] R. Karsthof, P. R["] acke, H. von Wenckstern, and M. Grundmann, *Phys. Status Solidi* A 213, No. 1, 30–37 (2016) [2] Yanwei Shen, et.al, *The Royal Society of Chemistry Adv.*, 2015, 5, 5976–5981

NiO/ZnO太陽電池の報告例

- 例1 (文献[1]より)
 - NiO:DCマグネトロンスパッタ法
 - ・ ZnO:PLD法

例2(文献[2]より)

- NiO:Sol-gel法
- ZnO:水熱合成法

[1] R. Karsthof, P. R["] acke, H. von Wenckstern, and M. Grundmann, *Phys. Status Solidi* A 213, No. 1, 30–37 (2016)
 [2] Yanwei Shen, et.al, The Royal Society of Chemistry Adv., 2015, 5, 5976–5981

NiO/ZnO太陽電池の報告例

- 例1 (文献[1]より)
 - NiO:DCマグネトロンスパッタ法
 - ・ ZnO:PLD法

例2(文献[2]より)

- NiO:Sol-gel法
- ZnO:水熱合成法

[1] R. Karsthof, P. R["] acke, H. von Wenckstern, and M. Grundmann, *Phys. Status Solidi* A 213, No. 1, 30–37 (2016)
 [2] Yanwei Shen, et.al, The Royal Society of Chemistry Adv., 2015, 5, 5976–5981

現在までの我々の取組み^[3]

現在までの取組:透明薄膜太陽電池への応用に向けたNiO成膜条件の最適化 成膜電流に水を電解する程の大電流を用いて透明性/厚さ/平坦さが向上

今回は、NiO上にZnO薄膜を成膜し、ヘテロ接合の作製・評価を試みる

[3] Miki Koyama and Masaya Ichimura 2018 Semicond. Sci. Technol. 33 055011

O ECD法	薬品	$Ni(NO_3)_2 \cdot 6H_2O$		
↓ ITO上にNi(OH) ₂ 前駆体を成膜	濃度	0.03 mol/L		
$\bigcap r = -\mu$	温度	室温		
↓ / Ni(OH)₂をNiOへ焼成	電流	-8.0 mA/cm ²		
	時間	45 秒		
NiO上にZnOを成膜				
▲ 真空蒸着 In電極を堆積	ビラス ITO	NiO ZnO In		

) ECD法

 ITO上にNi(OH)2前駆体を成膜
 雰囲気
 空気

 アニール
 温度
 400°C

 Ni(OH)2をNiOへ焼成
 時間
 1時間

ECD法

NiO上にZnOを成膜

真空蒸着

In電極を堆積

Q	ECD法	薬品		Zn(NO ₃)	₂ •6H ₂ O	
	ITO上にNi(OH) ₂ 前駆体を成膜	濃度		0.1 mol/	L.	
	アニール	温度		60° C		
Ĭ	Ni(OH)₂をNiOへ焼成	電流		-1.5 mA	/cm²	
	FCD注	時間	2分	5分	10 分	20 分
O ECD法 NiO上にZnOを成膜						(mar 1)
	真空蒸着 In電極を堆積	ガラス ITO	NiO ZnO			

11 / 19

ECD法 ITO上にNi(OH)₂前駆体を成膜 アニール Ni(OH)₂をNiOへ焼成 **ECD法** NiO上にZnOを成膜 真空蒸着 In電極を堆積

薬品	Zn(NO ₃) ₂ •6H ₂ O			
濃度	0.1 mol/L			
温度	60 ° C			
電流	-1.5 mA/cm ²			
時間	2 分	5分	10 分	20 分

表面粗さと膜厚

[µm] 縦倍率× 20,000

表面粗さと膜厚

[µm] 縦倍率×10,000

表面粗さと膜厚

- 可視領域では 60 %以上の透過率
- 透過率は成膜時間に依存しない;20分でも80%以上の透過率

電流・電圧特性

・ 成膜時間10分までは整流特性は時間と共に向上

- ・ 成膜時間10分までは整流特性は時間と共に向上
- ・20分成膜した試料は整流特性が低下

光起電力

光照射時 … Solar simulator - 100 mW/cm²

光起電力

光照射時 … Solar simulator - 100 mW/cm²

9/19 (Wed.) The 79th JSAP Autumn Meeting, 2018

光起電力

光照射時 ···· Solar simulator - 100 mW/cm²

考察

結果1:成膜時間10分までは時間と共に整流特性が向上 成膜時間とともに膜の形状が安定した事が関連

結果2:成膜時間10分では発電を確認 ZnOの膜厚増加による光の吸収量の増加が関連 (ZnO: 3.3 eV, NiO: 3.7 eV)

結果3:20分では整流特性が低下 原因は調査中

取り組み

ECD法による NiO/ZnO透明薄膜太陽電池の作製を試み、
 ZnOの成膜時間との関係を評価した

結果

- ・ 成膜時間10分までは、時間と共に整流性が向上した
- ・10分間成膜した試料は発電が確認された
- ・20分間成膜した試料は整流特性が低下

補助スライド

355 nm - UV light, 照射強度 3.2 mW/cm² (AM1.5中の紫外光の強度に相当 380 nm以下の紫外光の積分強度は~3 mW) 電極面積は0.42 cm²

Yanwei Shen, et.al, The Royal Society of Chemistry Adv., 2015, 5, 5976-5981

原理

$Ni^{2+} + 2OH^{-} \rightarrow Ni(OH)_{2}$

薬品中(Ni(NO₃)₂・H₂O)の<u>硝酸イオン</u>を利用 NO₃⁻+H₂O+2e⁻→NO₂⁻+2**OH**⁻

溶液中の水を利用

$\mathbf{2H_2O} + 2e^- \rightarrow H_2 + 2\mathbf{OH}^-$

表面状態の解析

-8.0 mA/cm² (as-deposited)

29 / 19

9/19 (Wed.) The 79th JSAP Autumn Meeting, 2018

表面状態の解析

-1.5 mA/cm² (as-deposited)

30 / 19

9/19 (Wed.) The 79th JSAP Autumn Meeting, 2018

Preferred Orientation

No orientation

Preferred orientation

結晶構造の解析

結晶構造の解析

Objective

Annealing with N_2 or Air were attempted

N₂ – anneal to increase oxygen vacancy of ZnO

- Oxygen vacancy in ZnO behaves as donor
- Accordingly, conductivity is expected to increase by N_2 -annealing

Air – anneal to dehydrate of $Zn(OH)_2$

- $Zn(OH)_2 \rightarrow ZnO + H_2O$... -OH is observed by Raman
- In contrast to N_2 , oxygen vacancy is expected decrease

= conductivity is expected to affected

Nagoya Institute of Technology

Objective

Air - To dehydrate of Zn(OH)₂

- $Zn(OH)_2 \rightarrow ZnO + H_2O$
- -OH was observed in Raman

= dehydration is not enough ?

Nagoya Institute of Technology

Condition

ECD			Anneal			
Soln.	$Zn(NO_3)_2 \cdot 6H_2O$	Atm.	Air N ₂	No anneal		
Conc.	0.1 M	Temp	200 °C	-		
Cur.	-1.5 mA/cm ²	Time.	1 hour	-		
Time	10 min					
Temp	60 °C					

I-V property

I-V property

* Under illumination (Solar simulator - 100 mW/cm²)

Photovoltaic-current was not observed significantly

ZnOアニール

ZnOアニール

ZnOアニール

ZnO成膜電流

ZnO成膜電流

9/19 (Wed.) The 79th JSAP Autumn Meeting, 2018

44 / 19

NiO / Fe-O

