N TYPE AIO, THIN FILMS FABRICATED BY DROP **PHOTOCHEMICAL DEPOSITION**

Masanari Umemura¹, Masaya Ichimura¹

1. Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan

2. EXPERIMENTS

Fabrication of AIO_x films by d-PCD method.

1.8 cm Mirror 1.8 cm Lens Substrate

Annealing condition

Electric Furnace Heating

	Glas
50	$S_2O_3^{2-}$ + $hv(UV) \rightarrow S + SO_3^{2-}$ (2) Sample (SiO
50	
500	$AI^{5+} + XS + 3e^{-} \rightarrow AIS_{X} (3)$
3.6-4.2	$AIS_{x} + XH_{2}O \rightarrow XH_{2}S + AIO_{x} (4)$ Atmosphere Air, N ₂ , H ₂
25 (RT)	Temperature [°C] 300, 500
0.25	$Na_2S_2O_3$ acts as a reducing agent and a source of sulfur. Time [h] 1
	50 50 500 3.6-4.2 25 (RT) 0.25

annealed samples on FTO.

Potential [V vs AgCl] **Fig.2** PEC (Photo Electro Chemical) measurement results of as-deposited and annealed samples (300 °C)

Potential [V vs AgCl] Fig.3 PEC measurement results of asdeposited and annealed samples (500 °C)

0.5

4. CONCLUSIONS

- By drop PCD, the AlO, films are fabricated. The films are composed of Al, O and S. $(O/AI = 1.1-1.3, S/AI \cong 0.02)$
- The films have n-type conductivity. The (photo)conductivity is not improved by annealing.
- The resistivity of the films are $5 \times 10^4 1 \times 10^6 \Omega cm$.